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Guided Modes on Open Chirowaveguides
Samir F.

Abstract— Surface wave modes on an open chiral rod and a

planar chiral slab are studied. It is showu that the effect of

ch]rality is to split each mode in the nonchiral case to a pair of

modes, the cutoff frequencies of which are above and below that

of the nonchh-al case. The mode with the lower cutoff freqnency is

dominantly right circularly polarized (RCP) mode while the mode

with the higher cutoff frequency is dominantly left circularly

polarized (LCP) mode near their respective cutoff frequencies.

At sufficiently higher frequencies, all modes tend to become

RCP (assuming a right handed chiral medium). Closed form

expressions for modal cutoff frequencies on the planar chiral

slab and chiral circtdar rod are derived. The surface wave modes

are classified as HE and EH modes and a suitable definition for

these mode types, that reduces to well known definitions in the

nonchiral case, is proposed.

I. INTRODUCTION

M UCH interest has been focussed on interaction of

microwaves with chiral materials during the last one or

two decades. As a result, several interesting phenomena have

been observed and several applications have been suggested

[1]–[6]. Guided waves have been studied on what has been

termed as “chirowaveguides” with perfectly reflecting walls

[7]-[ 11] and with constant impedance walls [12]. Thus, mode

bifurcation phenomenon and states of polarization of modes

have been investigated. Some works on open chirowaveguides

have also been presented; Pelet and Engheta [6] provided

rigorous analysis on excitation of surface wave modes and

radiation modes on chiral slabs or, chirostrips. Cory and Tamir

[13] studied modes on a chiral circular rod by expanding the

modal fields in terms of those of a similar achiral rod. The

modal phase constants of the chiral rod are then obtained as

the eigenvalues of a matrix that contains coupling coefficients

between modes. This method, termed as the field expansion

method, although limited to a small chiral admittance relative

to the achiral wave admittance, is attractive for being numer-

ically simple. Uslenghi considered guided waves on certain

special cases of bianisotropic waveguides [14].

In this paper we study surface wave modes on simple

open chirowaveguides; namely a circular chiral rod and a
planar chiral slab embedded in an external isotropic medium

as depicted in Fig. 1(a), (b). The emphasis is on mode

identification and the study of their polarization and behavior

of their cutoff frequencies as compared to the n’onchiral case.

The chiral material is assumed to have permittivity c(F/m),

chiral admittance ((mho) and permeability ~. Thus, for time
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Fig. 1. Open Chirowaveguides: (a) A chiral rod. (b) A chirat slab.

harmonic fields varying as exp(iwt), the constitutive relations

for the chiral medium can take the following form [1]-[3]:

D= EE–i<B

H = B/p – i(E

with the usual meaning of the symbols.

displays two bulk wavenumbers k~ for

(1)

(2)

The chiral medium

right hand and left

hand circularly polarized waves (RCP and L-CP), respectively.

These are given by [e.g. 12]:

[
k+ = k (l+c2)l/2 ● C

1
(3)

where k = w(~~~)llz and c = (L/S) li2(, is a normalized

chiral admittance relative to the achiral admittance (s/,u) 1/2.

The external medium to the chiral rod or slab is homogeneous

and isotropic with permeability LLGand permittivity s,.

In Section II the modal equation for the surface wave modes

on a chiral rod is derived using a rigorous approach. Study of

the mode cutoff behavior and modal field polarization along

with representative numerical examples are given in Section

III. A similar study for the chiral slab is presented in Section

IV and concluding remarks are given in Section V.

II. MODAL EQUATION

Looking for natural modes on the chiral rod waveguide

of Fig. 1(a), all fields for a given mode, are assumed to

have the dependence exp(–iflz – in~) where @ is the modal
longitudinal wavenumber and n is a positive or negative

integer specifying the azimuthal field dependence. The vector

fields in a chiral medium can be decomposed into right handed

(with bulk wavenumber k+) and left handed (with k.) vector

fields R and L. Thus. the longitudinal fields E. and Ifz in

the chiral rod may be written, apart from the common factor
exp(–i~.z – in~), as [11], [12]:

E. = AR. + BL2 = AJ~(rp) + BJ~(lp) (4)

–ir@z = ARZ – BLZ = AJ~(rp) – 13J~(lp) (5)
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where A and B are constants and J~ (. ) is the Bessel function

of first kind and of order m = [7L 1. The transverse wavenum-

bers r and 1refer to right handed and left handed waves and are

given by (I3I –,B2)li2 respectively, while q. = [LL/S(l+C2)]li2

is the chiral wave impedance [11], [12].

The longitudinal field components in the external region

p ~ a are appropriately given, apart from the common factor

eXp( –ifb – i?z~), by

E. = CIKm(ap) (6)

–z~, Hz = CzK~(ap) (7)

where Km(. ) is the modified Bessel function of second kind

and a is the transverse attenuation factor in air and is given

by (/32 – k~)l/2; ke = ti(Eee.)1/2 and q, = (K,/~,)1/2.

Next one derives the azimuthal field components inside and

outside the chiral rod from known formulas [e.g. 12], and

imposes the four boundary conditions at p = a requiring the

continuity of E=, EP, H. and HT. After some manipulations

to eliminate the constants Cl and C’2, we get:

[1
[A’f]zxz : = o (8)

where [M] z~z is a 2 x 2 matrix whose elements are given by:

IWll = –p, (/?) – (k+/r)J~(ru) – (k,/a)vJn(ra)&~

Mlz = –pz(~) + (k_/Z)J~(la) + (k,/a)vJ~(la)k~

M21 = –p.(~) – (k+/r)J~(ru) – (k./a)v-l J~(ra)k~

iWZW = +pl(~) – (k_/l)J~(la) – (ke/a)v-lJ~(la)I?~

(9)

where the dash on Jn (.) and Kn (.) stands for differentia-

tion with respect to argument, w = q, /qc = (EjL./E.LL) 1/2

(1 + c2)1/2 is the ratio between free space and chiral wave

impedances, and

p7(/?) = ~unJ~(ra) [(ra)-2 + (aa)-2]

~~(~) = B~~Jm(za) [(lu)-2 + (CUJ-2] (lo)

Km s K~(au)/K~(aa)

Finally the modal equation for the longitudinal wavenumber

/3 is simply given by equating the determinant of [Lf]2x2 by

zero, i.e.

Det[Af]2X2 = O (11)

III. GUIDED MODE CHARACTERISTICS

Since the modes are hybrid, they should be designated as

HEn, s or EHn, s where s is an integer related to the order

of the roots of (1 1). An obvious remark on the modal (11)

is that since pr (/3) and PZ (~) changes sign with n, one

deduces that a pair of modes with azimuthal dependence

exp( –imp), 7L = 3m will have different phase parameters;

i.e. & # $–~,,. Next we discuss mode cutoff frequencies
and mode polarization states.

A. Cutoff Frequencies

As surface wave modes, cutoff occurs whenever the trans-

verse attenuation a tends to zero. In this case ~ ~ L., and

each of p, (@, pl (f?) and (fire/a) becomes of the order of

l/(aa)2. Substitution in (11) and (9) gives

Lima_ o[Det(Al)] = 2nrn(k./~2) 2(v + v-l) .l~ (ra)J~(la)

So, the modal equation reduces at cutoff to either one of the

simple form:

( )
~m(~a) = Jm (k: – k~)l/2a = O (12)

or

Jm(la) ~ Jm ((k! – k~)112a) = O (13)

Therefore modes reduce at cutoff to two categories with

cutoff frequencies governed by (12) and (13). Note that both

equations do not depend on the sign of n, so that a pair of

modes with n = +m have the same cutoff frequency. A study

of the modal fields under condition (12) reveals that B = O

(see (4), (5)) signifying that no fields are associated with the

wavenumber k_, i.e. the chiral medium behaves as one having

a single wavenumber k+. Conversely, under condition (13),

A = o and the fields are not associated with k+. Of course, in

the absence of chirality, (12) and (13) become identical and

provide the same cutoff frequency which is determined by:

,) u) = o.Jm((~2 – ~z 1/2

The effect of chirality is thus to split each cutoff frequency

into two, and since k+ > t’i > li_ one is higher and one is

lower than that of the nonchiral case.

To demonstrate the effect of chirality on guided modes, the

modal wavenumbers for a nonchiral rod and a chiral rod, with

v = W,, ~ = 2&. and c = 0.1, are plotted for comparison

in Fig. 2 and 3 respectively. It is seen that the dominant

HE1l mode in the nonchiral case (Fig. 2) is split into the two

modes HE1l and HE_ 1,1 in the chiral case (Fig. 3). The EHII

HE12 modes in the nonchiral case have a normalized cutoff

frequency V, E (k: – k:) 1/2a = 3.832. They are split into 4

modes in the chiral case, two of which have V. = 3.189 and

the other two have V. = 4.795. Similar splitting occurs for the

modes EHIZ and HEM whose cutoff occurs at V. = 7.016 for

the nonchiral case. This mode splitting, or bifurcation, is also

displayed in Fig. 4 showing the normalized cutoff frequency

VC versus the chirality parameter c. Each cutoff frequency in

the nonchiral case; c = O. is split in two branches for finite

values of c.

It remains to set forth some rule for identifying modes as HE

or EH. We start by identifying the zero cutoff modes as HE+l, 1

in agreement with the nonchiral case. We’ve noticed that the

ratio of coefficients B/A for any given mode is monotonically

decreased towards zero as the normalized frequency V is

sufficiently increased., however, the sign of B/A as it goes

to zero can be positive or negative depending on the mode.

So, a consistent rule for mode identification is extracted and

can be stated as follows. A mode is identified as HE~,,/EHn,s

if for sufficiently high V, the ratio (nB/A) approaches zero

from ~ositivehe~ative values. This simde rule, used to label
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Fig. 3. Longitudinal modal wavenumber versus normalized frequency on a

cbiral rod.

modes in Fig. 3, is actually similar to one adopted by Bruno

and Bridges [15] in connection with modes on nonchiral rods.

B. Modal Fields

To study the modal fields, it will prove fruitful to consider

first the case v = 1. This corresponds to equal values of

impedances in the chiral and external medium; i.e. VC = qe,

which requires:

P/,f& = (s/%)(1 + Cz) 14

Under the condition v = 1, one finds from (9) that AZll =

Alzl, and Allz = –L!lzz, whence the modal equation (11)

reduces to:

iMll=Oand B=O (15)

iW12=Oand A=0 (16)

Thus, modes fall in two categories; in one category, corre-

sponding to (15), the chiral material behaves as a medium

with a single bulk wavenumber k+. In the other category,
corresponding to (16), it behaves as having a single bulk
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Fig. 4. Crosspolar ratio versns normalized frequency on a chirat rod.

wavenumber k–. Obviously, at cutoff these two categories

obey (12) and (13) respectively. To study the modal fields, let

us write down the transverse electric vector field of a mode in

the first category. For clarity, take n = +1, then apart from

a constant,

Et = (A/r) [JO(rp)(k+ + @)(&– ij)

+ J2(rp)(k+ – 0)(?+ ij)) exp(–i2p)] (17)

which is valid inside the chiral rod. Here 2 and j) are unit

cartezian vectors. The first term in (17) represents an E!CP

field and the second term represents an LCP field. It is clear

that the major polarization is RCP and as ~ approaches k+,

the crosspolar component approaches zero. Conversely for a

mode in the second category with n = +1,

Et = (–B/l)[Jo(lp)(k_ – @)(; – iij)

+ J2(ip)(k- + 0)(2+ ii) exp(–i2p)] (18)

where the major polarization is LCP, particularly when ~

approaches k–.

Next, in the general case v # 1, the transverse modal E

field is simply a weighted sum of (17) and (18); (see (4), (5)).

A suitable crosspolar factor may then be defined as the

field comonent at p = a and p = O divided by the

component at p = O. This leads to a crosspolar factor

for n = +1 modes as

~cp = (~ - k+) Jz(ra) - (Br/Al)(p + k-)~~(ia)

(D+ k+) + (Br/Al)(B - k-)

L,CP

R.CP

XCP

(19)

For n = – 1 modes one can show that (19) holds for the
reciprocal of XCP if the signs in front of k+ and k– are

reversed.

The crosspolar factor is plotted in dB versus normalized

frequency V for modes with n = +1 in Fig. 5. It is seen

that the XCP is monotonically decreasing with frequency for

modes with n = +1. Modes with n = – 1 display high

positive values of XCP, signifying that they are dominantly

LCP, in limited frequency bands. However, as the frequency

increases sufficiently, the XCP turns to negative values and all

modes eventually turn into RCP modes.
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Fig. 5. Normalized cutoff frequencies of modes on a chiral rod versus

normalized chiratity.

IV. THE PLANAR CHIRAL SLAB

In this section, we turn attention to guided modes on a planar

chiral slab as depicted in Fig. lb. We look for modes varing

as exp(iut – i~,z). Assuming uniform fields along y, one

can write for the z dependence of the modal fields inside the

chiral slab; Izl < a (11–12):

Ev = A~(r~) + B~(kc) (20)

–zr/cHy = Af(nz) – B$(l~) (21)

and the fields outside the slab; [z I > a:

E, = +Cl exp[–a(lxl – a)] (22)

–irleHv = +Cz exp[–a(lzl – a)] (23)

where ~(u) = COS(U) for even modes and $(u) = sin(u) for

odd modes. The +/– signs are for even/odd modes. The rest

of the symbols: r, 1, and a have the same meaning as used in

Sec II for the chiral rod.

The other field components, particularly E= and Hz can be

obtained from well known relations [e.g. 12] and the boundary

conditions at z = +a are applied to provide four equations in

the unknown coefficients A, B, Cl, C2. Eliminating Cl and

C2 we get an equation of the form (8) with

A(II = (r/k+ )$’(ra) + (a/kev)~(ra)

MIZ = (1/k_ )~’(la) + (a/k. v)j(la)

MZI = (r/k+ )f’(ra) + (ow/k.)f(ra)

MZZ = –(1/k_)f’(la) – (aw/ke)~(la) (24)

where v = q. /qC as defined in Section II. The modal equation

is again given by (1 1).

Mode cutoff conditions are derived by letting a tends to
zero in the modal (11) and (24]. This leads to two categories

of mode cutoff

(l): f’(r-a) = f’((k~ – k~)l/2a) = O and El = O (25)

and

(2): ~’(la) = ,f’((k~ – k~)li2a) = O and A = O (26)
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Fig. 6. Longitudinal modal wavenumber versus normalized frequency for

even modes on a chiral slab.

Noting that ~’(u) = -- sin u for even modes, and ~’(u) =

cos u for odd modes. we find that mode cutoffs are given by

(kj - k~)1f2a = n7r/2 (27)

where the + signs refer to modes in 1st and 2nd category

respectively.

The integer n above is O, 2, 4,. . . for even modes and 1,

3,... for odd modes. The similarity of (25) and (26) wiih (12)

and (13) is clear. Namelly, in the absence of chirality the above

two equations coincide indicating that one cutoff frequency in

the nonchiral case splits into two when chirality is introduced.

A numerical example showing mode dispersion of even

modes versus normalized frequency on a chiral slab is given

in Fig. 6. Here ,u = ~., e = 3e. and c = 0.25. Mode order is

designated by an even integer n which relates to mode cutoff as

given by (27), and a plus /minus sign depending on whether the

mode belongs to category 1 or 2 respectively. For example, the

mode labelled by “2+” has cutoff given by (k~ – k~)l/2a = n

while the mode “2-” has cutoff “given by (k: – i$ ) 112a := m.

Obviously modes labelled by O+ and O– have zero cutoff

frequency but different /3’s at finite frequencies. It is worth

noting that the above mentioned mode designation is merely

a convention and any other convention may as well be used.

For example,we could use the designation HEm for modes with

cutoff given by (25) and EH. for modes with cutoff given by

(26).

To study the modal fields, we first consider the important

special case v = 1, or equivalently when (14) holds. In this

case M1l = M21 and M12 = –M22, whence the modal

equation splits into two mode categories for which Ml 1 = O

and B = O in category 1 and Mlz = O and A = O in category

2. It is clear that in this special case the chiral medium behaves
as one having a single bulk wavenumber k+ or k_ (see (24)).

The corresponding transverse vector E field is expressed for

category 1 modes by:

Et = (iAf(rz)/2k+)[(k+ + ,6)(; – ZY) – (~+ – p)(~ + ZY)]

(28)
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and for category 2 modes by

Et= (iBf(lT)/2k-)[(k_ + p)(i + 2Y) + (k- - E)(t – @)l

(29)

It is clear that the major polarization of modes in category 1

is RCP and for category 2 is LCP.

V. CONCLUDING REMARKS

A rigorous analysis for guided surface wave modes on a chi-

ral rod and a planar chiral slab embedded in an homogeneous

isotropic medium has been presented. Simple closed forms for

the cutoff frequencies of the modes have been derived. It is

found that for each cutoff frequency in the absence of chirality,

there exist two cutoff frequencies in the chiral case; the lower

of the two is determined by the wavenumber k+ alone and the

higher is determined by k- alone (12), (13) and (25), (26).

Guided Modes on the chiral rod or slab are always hybrid

and are generally a superposition of RCP and LCP field com-

ponents. However, as the frequency is sufficiently increased,

each mode tends to have ~ approaching k+, hence each

mode tends to become RCP. (assuming a right-handed chiral

medium).

The special case of equal chiral and external medium

impedances is of particular importance. In this case the modes

fall into two categories in which the chiral medium behaves as

having a single bulk wavenumber k+ or k-. Modes in the first

category are dominantly RCP and in the second are dominantly

LCP. A chiral rod under this condition can be adapted for use

as an antenna or reflector antenna feed radiating low crosspolar

fields over a very wide frequency band. If p. = p, condition

(14) for equal impedances reduces to z. = E(1 +c2)l/2. A clad

of sufficient thickness having this value of E. will secure the

low crosspolar behavior. Even, if the outside medium is merely

air, results presented in Fig. 5 show that low XCP values can

be maintained by the low order modes over a wide frequency

range. By proper excitation, one should be able to efficiently

excite the lower order modes and reduce higher order modes.

[1]

[2]

REFERENCES

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic
waves in chkal mediat’ J. App[. Wrys., vol. 18, pp. 21 1–216, 1979.
S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic wave prop-
agation through a dielectric-chid interface and through a Chirdl slab,”

1 Opt. Sot. Am. A, vol. 5, no. 9, pp. 1450-1459, Sept. 1988.

[3]

[4]

[5]

[6]

[’7]

[8]

[9]

[10]

[IIJ

[12]

[13]

[14]

[15]

A. Lakhtakia, V K. Vdradan, and V. V. Varadan, i%rre Harmonic’

electromagnetic jields in chiral media. Berlin: Springer Verlag, 1989.
J, C. Liu and D. L. Jaggdrd, “Chiral Payers on planar srrrfaces:’ J.

Electromagnetic Waves Applicat., special issue, vol. 6, no. 516, pp.
651-667, 1992.
D. L. Jaggard and J. C. Liu, “Chiral layers on curved surfaces,” .I.
Electromagnetic waves and Applicat., special issue, vol. 6, no. 516, pp.
669-694, 1992.
P. Pelet and N. Engheta, “Chiroskip antennas; Line source problem,”

J. Electromawretk waves and &DliCUt, suecial issue, VOL 6, no. 5/6,. .
pp. 771-793:1992.
N. Emzheta and P. Pelet, “Modes in chirowaveguides,” Optics Lett., vol.
14, n: 11, pp. 593-595, June 1989. - “
C. Eftimiu and L. W. Pearson. “Guided Electromagnetic Waves in chiral

Media,” Radio Science, vol. 24, pp. 351-359, 1989.
J. A. M. Svedin, “propagation analysis of chirowaveguides using the

finite-element Method,” LEEE Trans. Microwave Theory Tech., vol. 38,
no. 10, pp. 1.488-1496, 1990.
R. D. Hollinger, V. V. Varadan, smd V. K. Vrrmdan, “Eigenmodes in
a circular waveguide containing an isotropic chiral material,” Radio
Science, vol. 26, no. 5, pp. 1335–1344, Sep.–Ott., 1991.
Samir F. Muhmoud, “On mode bifurcation in chirowaveguides with
perfect electric walls,” J. Electromagnetic Waves and Applicat., vol. 6,
no. 10, pp. 1381–1 392, Oct. 1992.
Samir F. Msshmoud, “Mode characteristics in chirowaveguides with
constant impedance walls,” J. Electromagnetic Waves and Applicat., vol.

6, no. 516, pp. 625-640, June 1992.
H. Cory and T. Tatnir, “Coupling processes in circular open chirowaveg-

uides,” in L5E Proc., 1992, Par-H, vol. 139, no. 2, pp. 165–170.
P. L. E. Uslenghi, “Theory of certain Bianisotropic waveguides,” in
Proc, URSI Int. Symp. Electromagnetic Theory, Sydney, Australia, Aug.,

1992, pp. 17-20.
W. M. Brnno and W. B Bridges, “Flexible dielectric waveguides with
powder cores;’ IEEE Trans. ~icrowave Theory Tech., vol. MTT-36, pp.

882-890, 1988.

Samir F. Mahmoud (SM’ 83) Graduated from the
Electronic Engineering Department, Cairo Univer-

sity, Giztr, Egypt in 1964. He received the M. SC.
and Ph.D. degrees from the Electrical Engineering
Department, Queen’s University, Kingston, Ontario,

Canada in 1970 and 1973. During the academic year
1973–74 he was a visiting research fellow at the
Cooperative Institute for Research in Environmen-
tal Sciences (CIRES), Boulder, CO. He spent two
sabbatical years, 1980–’ 82, between Queen Mary
College. London. and British Aerosuace. Stevena~e,-. .

where he was involved in the research and design of feeds for satelfite

antennas.

Since 1964, Dr. Mahmoud has been with the staff of the Elecronic
Engineering Department, Cairo University, where he is a full professor. He

is atso a Professor on loan to Kuwait University. HIS research activities
have been in the artia of geophysical application of electromagnetic waves,
communication in mine tunnel environment, satellite antennas, and wave

interaction with chiml media.


