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Guided Modes on Open Chirowaveguides

Samir F. Mahmoud

Abstract— Surface wave modes on an open chiral rod and a
planar chiral slab are studied. It is shown that the effect of
chirality is to split each mode in the nonchiral case to a pair of
modes, the cutoff frequencies of which are above and below that
of the nonchiral case. The mode with the lower cutoff frequency is
dominantly right circularly polarized (RCP) mode while the mode
with the higher cutoff frequency is dominantly left circularly
polarized (LCP) mode near their respective cutoff frequencies.
At sufficiently higher frequencies, all modes tend to become
RCP (assuming a right handed chiral medium). Closed form
expressions for modal cutoff frequencies on the planar chiral
slab and chiral circular rod are derived. The surface wave modes
are classified as HE and EH modes and a suitable definition for
these mode types, that reduces to well known definitions in the
nonchiral case, is proposed.

1. INTRODUCTION

UCH interest has been focussed on interaction of

microwaves with chiral materials during the last one or
two decades. As a result, several interesting phenomena have
been observed and several applications have been suggested
[1]-[6]. Guided waves have been studied on what has been
termed as “chirowaveguides” with perfectly reflecting walls
[7]-[11] and with constant impedance walls [12]. Thus, mode
bifucation phenomenon and states of polarization of modes
have been investigated. Some works on open chirowaveguides
have also been presented; Pelet and Engheta [6] provided
rigorous analysis on excitation of surface wave modes and
radiation modes on chiral slabs or, chirostrips. Cory and Tamir
[13] studied modes on a chiral circular rod by expanding the
modal fields in terms of those of a similar achiral rod. The
modal phase constants of the chiral rod are then obtained as
the eigenvalues of a matrix that contains coupling coefficients
between modes. This method, termed as the field expansion
method, although limited to a small chiral admittance relative
to the achiral wave admittance, is attractive for being numer-
ically simple. Uslenghi considered guided waves on certain
special cases of bianisotropic waveguides [14].

In this paper we study surface wave modes on simple
open chirowaveguides; namely a circular chiral rod and a
planar chiral slab embedded in an external isotropic medium
as depicted in Fig. 1(a), (b). The emphasis is on mode
identification and the study of their polarization and behavior
of their cutoff frequencies as compared to the nonchiral case.
The chiral material is assumed to have permittivity e(F/m),
chiral admittance ((mho) and permeability . Thus, for time
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Fig. 1. Open Chirowaveguides: (a) A chiral rod. (b) A chiral slab.

harmonic fields varying as exp(iwt), the constitutive relations
for the chiral medium can take the following form [11-[3]:

D=c¢F—-iB (1)

H=B/u-iCE )

with the vsual meaning of the symbols. The chiral medium
displays two bulk wavenumbers k. for right hand and left
hand circularly polarized waves (RCP and L.CP), respectively.
These are given by [e.g. 12]:

he = B[(1+ )2 2 ] 3)

Y2 and ¢ = (u/e)'/?¢, is a normalized

1/2.

where k = w(ue)
chiral admittance relative to the achiral admittance (e/p)
The external medium to the chiral rod or slab is homogeneous
and isotropic with permeability (. and permittivity &..

In Section II the modal equation for the surface wave modes
on a chiral rod is derived using a rigorous approach. Study of
the mode cutoff behavior and modal field polarization along
with representative numerical examples are given in Section
HI. A similar study for the chiral slab is presented in Section
IV and concluding remarks are given in Section V.

II. MODAL EQUATION

Looking for natural modes on the chiral rod waveguide
of Fig. 1(a), all fields for a given mode, are assumed to
have the dependence exp(—i3z — in¢) where J is the modal
longitudinal wavenumber and n is a positive or negative
integer specifiying the azimuthal field dependence. The vector
fields in a chiral medium can be decomposed into right handed
{with bulk wavenumber k) and left handed (with k_) vector
fields R and L. Thus, the longitudinal fields £, and H, in
the chiral rod may be written, apart from the common factor
exp(—ifz — ing), as [11], [12]:

E,= AR, + BL, = Al (rp) + Bln(lp) @

—in.H, = AR, — BL, = AJp(rp) — BJn(lp) (5
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where A and B are constants and J,,(-) is the Bessel function
of first kind and of order m = |n|. The transverse wavenum-
bers r and [ refer to right handed and left handed waves and are
given by (k3 —32)1/2 respectively, while n. = [u/e(I+c?)]/?
is the chiral wave impedance [11], [12].

The longitudinal field components in the external region
p > a are appropriately given, apart from the common factor

exp(—ifz — ing), by

Ez = Cle(O‘p) (6)
—in.H, = Co K, (ap) )

where K,,,(-) is the modified Bessel function of second kind
and « is the transverse attenuation factor in air and is given
by (132 - k?)l/Q; ke = w(“ﬁge)l/z and 7. = (Ne/(‘:e)l/Q'

Next one derives the azimuthal field components inside and
outside the chiral rod from known formulas [e.g. 12]. and
imposes the four boundary conditions at p = a requiring the
continuity of E,, E,, H, and H,. After some manipulations
to eliminate the constants C7 and C5, we get:

[M]22 Lg‘] =0 ®
where [M]2x2 is a 2 x 2 matrix whose elements are given by:
My = =, (8) = (b /r) T (r6) = (ke /@) (ra) Ko
Mz = —pi(B) + (k_/D T, (10) + (ke/@)vIm(la) K
Moy = —p(B) — (ky/r) T, (ra) — (ko/a)v T n(ra) Ky,

My = +pi(8) — (h— /1) T (1a) — (ke /ayo™ T (la) K
&)

]

where the dash on J,,(-) and K,,(-) stands for differentia-
tion with respect to argument, v = 7./1. = (efte/ccp)*/?
(1 4 ¢)'/2 is the ratio between free space and chiral wave
impedences, and

p-(8) = Band,(ra) [(m)_2 + (aa)_z]
pi(B) = Bandp(la)[(la) ™ + (ca)~?]
K, = 1 (o) K (aa)

10

Finally the modal equation for the longitudinal wavenumber
3 is simply given by equating the determinant of [M]3yx2 by
zero, i.e.

Det[M]QXz :O (11)

III. GUIDED MODE CHARACTERISTICS

Since the modes are hybrid, they should be designated as
HE, ; or EH, , where s is an integer related to the order
of the roots of (11). An obvious remark on the modal (11)
is that since p,.{3) and p;() changes sign with n, one
deduces that a pair of modes with azimuthal dependence
exp(—iny),n = +m will have different phase parameters;
ie. Bms # Pom. s Next we discuss mode cutoff frequencies
and mode polarization states.

A. Cutoff Frequencies

As surface wave modes, cutoff occurs whenever the trans-
verse attenuation « tends to zero. In this case 8 — ke, and
cach of p,(8), pi(B) and (K,,/a) becomes of the order of
1/(ca)?. Substitution in (11) and (9) gives

Limg,_o[Det(M)] = 2nn1(ke/a2)2(v + v T (ra) I (la)

So, the modal equation reduces at cutoff to either one of the
simple form:

T(ra) = T, ((ki - kg)l/za) —0 12)

or

T (la) = T ((k% - kz)l/%) ~0 (13)
Therefore modes reduce at cutoff to two categories with
cutoff frequencies governed by (12) and (13). Note that both
equations do not depend on the sign of n, so that a pair of
modes with n = +m have the same cutoff frequency. A study
of the modal fields under condition (12) reveals that B = O
(see (4), (5)) signifying that no fields are associated with the
wavenumber k_, i.e. the chiral medium behaves as one having
a single wavenumber k. Conversely, under condition (13),
A = o and the fields are not associated with k.. Of course, in
the absence of chirality, (12) and (13) become identical and
provide the same cutoff frequency which is determined by:
T (K2 — kDV/2%4) = 0.

The effect of chirality is thus to split each cutoff frequency
into two, and since k4 > k > k_ one is higher and one is
lower than that of the nonchiral case.

To demonstrate the effect of chirality on guided modes, the
modal wavenumbers for a nonchiral rod and a chiral rod, with
b= le, & = 26, and ¢ = 0.1, are plotted for comparison

-in Fig. 2 and 3 respectively. It is seen that the dominant

HE{; mode in the nonchiral case (Fig. 2) is split into the two
modes HEq; and HE_; ; in the chiral case (Fig. 3). The EHy;
HE; > modes in the nonchiral case have a normalized cutoff
frequency V. = (k2 — k2)1/2a = 3.832. They are split into 4
modes in the chiral case, two of which have V. = 3.189 and
the other two have V. = 4.795. Similar splitting occurs for the
modes EH;» and HE{3 whose cutoff occurs at V. = 7.016 for
the nonchiral case. This mode splitting, or bifurcation, is also
displayed in Fig. 4 showing the normalized cutoff frequency
V. versus the chirality parameter c¢. Each cutoff frequency in
the nonchiral case; ¢ = 0. is split in two branches for finite
values of c.

It remains to set forth some rule for identifying modes as HE
or EH. We start by identifying the zero cutoff modes as HE 1 1
in agreement with the nonchiral case. We’ve noticed that the
ratio of coefficients B/A for any given mode is monotonically
decreased towards zero as the normalized frequency V is
sufficiently increased., however, the sign of B/A as it goes
to zero can be positive or negative depending on the mode.
So, a consistent rule for mode identification is extracted and
can be stated as follows. A mode is identified as HE,, s /EH,, ,
if for sufficiently high V, the ratio (nB/A) approaches zero
from positive/negative values. This simple rule, used to label
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Mode dispersion of a dielectric rod
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Fig. 2. Longitudinal modal wavenumber versus normalized frequency on a
dielectric rod.

Mode dispersion of a chiral rod
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Fig. 3. Longitudinal modal wavenumber versus normalized frequency on a
chiral rod.

modes in Fig. 3, is actually similar to one adopted by Bruno
and Bridges [15] in. connection with modes on nonchiral rods.

B. Modal Fields

To study the modal fields, it will prove fruitful to consider
first the case v = 1. This corresponds to equal values of
impedances in the chiral and external medium; ie. 7, = 775,
which requires:

p/te = (e/ec)(1 + %) 14

Under the condition v = 1, one finds from (9) that My, =

My, and My, = — Moy, whence the modal equation (11)
reduces to:

My =0and B=0 15)

Mis=0and A=0 (16)

Thus, modes fall in two categories; in one category, corre-
sponding to (15), the chiral material behaves as a medium
with a single bulk wavenumber k.. In the other category,
corresponding to (16), it behaves as having a single bulk
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Fig. 4. Crosspolar ratio versus normalized frequency on a chiral rod.

wavenumber k_. Obviously, at cutoff these two categories
obey (12) and (13) respectively. To study the modal fields, let
us write down the transverse electric vector field of a mode in
the first category. For clarity, take n = +1, then apart from
a constant, '

= (A7) o(ro) by + B) (G — i)
+ Jo(rp)(ky — B)(& + i§) exp(—i2yp)]

which is valid inside the chiral rod. Here # and ¢ are unit
cartezian vectors. The first term in (17) represents an RCP
field and the second term represents an LCP field. It is clear
that the major polarization is RCP and as (8 approaches k.,
the crosspolar component approaches zero. Conversely for a
mode in the second category with n = +1,

E; = (=B/D)[Jo(lp) (k- = B)(& — i9)
+ J2(lp) (k- + B) (& + i) exp(—i2¢p)]

where the major polarization is LCP, particularly when ﬁ
approaches k_.

Next, in the general case v # 1, the transverse modal E
field is simply a weighted sum of (17) and (18); (see (4), (5)).
A suitable crosspolar factor may then be defined as the LCP
field comonent at p = a and ¢ = 0 divided by the RCP
component at p =-0. This leads to a crosspolar factor XCP
for n = +1 modes as

(8 — ki) Ja(ra) — (Br/AD(B + k-)J>(la)
(8 +ky) + (Br/AD(B - k-)

For n = —1 miodes one can show that (19) holds for the
reciprocal of XCP if the signs in front of k. and k_ are
reversed.

The crosspolar factor is plotted in dB versus normalized
frequency V for modes with n = +£1 in Fig. 5. It is seen
that the XCP is monotonically decreasing with frequency for
modes with n = 41. Modes with n = —1 display high
positive values of XCP, signifying that they are dominantly
LCP, in limited frequency bands. However, as the frequency
increases sufficiently, the XCP turns to negative values and all
modes eventually turn into RCP modes.

a7

(18)

XCP = 19
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Fig. 5. Normalized cutoff frequencies of modes on a chiral rod versus
normalized chirality.

IV. THE PLANAR CHIRAL SLAB

In this section, we turn attention to guided modes on a planar
chiral slab as depicted in Fig. 1b. We look for modes varing
as exp{iwt — ifz). Assuming uniform fields along y, one
can write for the « dependence of the modal fields inside the
chiral slab; |z| < a (11-12):

E, = Af(rz) + Bf(lx) (20)
—inHy = Af(rz) — Bf(lz) 2y
and the fields outside the slab; |z| > a:
E, = £C; exp[—a(|z| — a)] (22)
—in.Hy = £C5 exp[—a(|z| — a)] 23

where f(u) = cos(u) for even modes and f(u) = sin(u) for
odd modes. The +/— signs are for even/odd modes. The rest
of the symbols: r, [, and « have the same meaning as used in
Sec 1II for the chiral rod.

The other field components, particularly £, and H, can be
obtained from well known relations [e.g. 12] and the boundary
conditions at x = +a are applied to provide four equations in
the unknown coefficients A, B, Cy, C5. Eliminating ¢, and
C>2 we get an equation of the form (8) with

My = (r/ki)f'(ra) + (a/kev) f(ra)
My = (I/k_)f'(la) + (a/kev) f(la)
May = (r/ky) f'(ra) + (av/ke)f(ra)
My = —(I/k-)f'(la) — (aw/ke) f (la)
where v = 1, /7). as defined in Section II. The modal equation
is again given by (11).
Mode cutoff conditions are derived by letting « tends to

zero in the modal (11) and (24). This leads to two categories
of mode cutoff:

(: f'(ra) = f'((k% - k2)"/?a) =0 and B=10

i

i

(24)

(25)
and

@): f'(la) = f/(K* —kHY20)=0and A=0  (26)

Even Modes on a Chiral Slab
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Fig. 6. Longitudinal modal wavenumber versus normalized frequency for
even modes on a chiral slab.

Noting that f'(u) = —sinw for even modes, and f'(u) =
cosu for odd modes. we find that mode cutoffs are given by

(k2 — k)20 = nx /2 Q7
where the + signs refer to modes in 1st and 2nd category
respectively.

The integer n above is 0, 2, 4,... for even modes and 1,
3,... for odd modes. The similarity of (25) and (26) with (12)
and (13) is clear. Namely, in the absence of chirality the above
two equations coincide indicating that one cutoff frequency in
the nonchiral case splits into two when chirality is introduced.

A numerical example showing mode dispersion of even
modes versus normalized frequency on a chiral slab is given
in Fig. 6. Here i1 = i, e = 3¢, and ¢ = 0.25. Mode order is
designated by an even integer n which relates to mode cutoff as
given by (27), and a plus /minus sign depending on whether the
mode belongs to category 1 or 2 respectively. For example, the
mode labelled by “2+" has cutoff given by (k2 —k2)1/%a ==
while the mode “2— has cutoff given by (k2 — £2)'/2q = .
Obviously modes labelled by 0+ and 0— have zero cutoff
frequency but different ’s at finite frequencies. It is worth
noting that the above mentioned mode designation is merely
a convention and any other convention may as well be used.
For example,we could use the designation HE,, for modes with
cutoff given by (25) and EH,, for modes with cutoff given by
(26).

To study the modal fields, we first consider the important
special case v = 1, or equivalently when (14) holds. In this
case My1 = My and My, = —Msy, whence the modal
equation splits into two mode categories for which Mi; = 0
and B = 0 in category 1 and M2 = 0 and A = 0 in category
2. It is clear that in this special case the chiral medium behaves
as one having a single bulk wavenumber k.. or k_ (see (24)).
The corresponding transverse vector F field is expressed for
category 1 modes by: '

By = (iAf(r2)/2k)[(ky + B)(& — i) — (ky = B)(& +i7)]
(28)
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and for category 2 modes by

E; = (iBf(lz)/2k-)[(k- + B)(@ + i) + (k- — B)(& — i7)]
(29)

It is clear that the major polarization of modes in category 1
is RCP and for category 2 is LCP.

V. CONCLUDING REMARKS

A rigorous analysis for guided surface wave modes on a chi-
ral rod and a planar chiral slab embedded in an homogeneous
isotropic medium has been presented. Simple closed forms for
the cutoff frequencies of the modes have been derived. It is
found that for each cutoff frequency in the absence of chirality,
there exist two cutoff frequencies in the chiral case; the lower
of the two is determined by the wavenumber k. alone and the
higher is determined by k_ alone (12), (13) and (25), (26).

Guided Modes on the chiral rod or slab are always hybrid
and are generally a superposition of RCP and LCP field com-
ponents. However, as the frequency is sufficiently increased,
each mode tends to have [ approaching k., hence each
mode tends to become RCP. (assuming a right-handed chiral
medium).

The special case of equal chiral and external medium
impedances is of particular importance. In this case the modes
fall into two categories in which the chiral medium behaves as
having a single bulk wavenumber & or k£_. Modes in the first
category are dominantly RCP and in the second are dominantly
LCP. A chiral rod under this condition can be adapted for use
as an antenna or reflector antenna feed radiating low crosspoiar
fields over a very wide frequency band. If y. = p, condition
(14) for equal impedences reduces to e, = e(14+¢2)1/2. A clad
of sufficient thickness having this value of .. will secure the
low crosspolar behavior. Even, if the outside medium is merely
air, results presented in Fig. 5 show that low XCP values can
be maintained by the low order modes over a wide frequency
range. By proper excitation, one should be able to efficiently
excite the lower order modes and reduce higher order modes.
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